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Local entropy in quasi-one-dimensional heat transport
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We study the nonequilibrium entropy of the heat transport problem by performing molecular dynamics
simulations of a quasi-one-dimensional gas of hard disks in the steady state. The entropy density, flux, and
production rate, associated with the entropy balance of the system, are obtained from the numerically measured
velocity distributions, based on the kinetic theory analysis of the Boltzmann entropy. We obtain an equilibri-
umlike Clausius relation from the computer experiments which, in turn, fulfills the generalized Gibbs relation

for spatially inhomogeneous states.
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I. INTRODUCTION

The notion of entropy lies at the heart of nonequilibrium
(NE), or irreversible thermodynamics, however, to date no
appropriate theoretical definition has been given for NE en-
tropy itself. A plausible, immediate attempt is to replace the
equilibrium ensemble density by the time-dependent precur-
sor to the Gibbs equilibrium entropy. Unfortunately, this gen-
eralization fails to provide a proper representation of the NE
entropy because it turns out to be a constant of motion for a
closed system governed by Hamiltonian dynamics [1]. Thus,
it does not accommodate the second law of thermodynamics
as the spontaneous increase in entropy in the course of time
for an isolated system prepared initially in a NE condition.
Under this awkward situation, one is still required to furnish
a balance equation for some entropy in order to facilitate the
phenomenology of irreversible thermodynamics [2].

An exceptional case is found for a low-density gas and for
that Ludwig Boltzmann provided us with the H theorem [3].
Accordingly, when the negative of the H function is accepted
as a NE entropy for a dilute system, the statement of the
second law of thermodynamics makes perfect sense. The
probability density entering into the Boltzmann entropy is
the one-particle reduced distribution function which is to be
determined from the Boltzmann kinetic equation. Thus, ki-
netic theory provides a perceptible definition of the NE en-
tropy for dilute systems at the cost of giving up the exact, N
particle dynamics but sampling it by an effective one-particle
dynamics.

In this work we adopt the Boltzmann entropy as a NE
entropy to investigate NE thermodynamics. The system con-
sidered is a quasi-one-dimensional (QOD) low-density gas of
hard disks with each end in contact with a heat reservoir at
different temperatures. The hard disks collide with the walls
according to the microscopic model of boundary scattering.
The QOD system is chaotic, so as a consequence, it shows
local thermal equilibration between the two (x and y) com-
ponents of the kinetic energy achieved through particle dy-
namics alone. The extra advantage of the QOD model is that
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particles are ordered in space. Accordingly, the local proper-
ties are related to a single particle, which allows a very con-
venient access to the study of local properties. In the steady
state temperature gradients set up, which play the role of a
thermodynamic force to generate a heat flux along the struc-
ture. We perform molecular-dynamics (MD) simulations un-
der this NE condition to obtain the velocity distributions of
each particle and utilize them to calculate the nonequilibrium
properties associated with the entropy balance of the system.

The major goal of this work is to study the local
properties of the NE entropy of the system in the steady state
directly from MD computer experiments and compare the
results with those of the Boltzmann equation. Our NEMD
method is not restricted to small temperature gradients; how-
ever we limit our attention mainly to the small gradient re-
gime where one finds that the conventional description of
linear irreversible thermodynamics applies. It is of central
importance to construct an appropriate, first law of thermo-
dynamics in local form, namely a generalized Gibbs relation,
in irreversible thermodynamics. The first law of thermody-
namics is a general statement about the energy balance in the
system of interest, which is typically open to the surrounding
[4]. Accordingly, it holds not only for reversible but also NE
irreversible changes of the system. The utility of the first law
is to provide a means to calculate the various thermodynamic
properties, thus to provide, in particular, a meaning for the
thermometric as well as calorimetric measures in real experi-
ments.

There are other studies of the NE entropy; however, it is
rare to find such investigations in the literature where the
local properties of the NE entropy are investigated. This may
have something to do with the fact that a quantitative inves-
tigation of spatially inhomogeneous NE states is quite a de-
manding task. Most systems investigated previously were as-
sumed to be homogeneous in that the locality of the entropy
density did not enter into the problem. Instead, the NE state
was characterized by an external parameter like shear rate in
the uniform shear flow problems [5-7]. Then, the uniform
entropy as a function of the shear rate was of major interest
analytically, not restricted to a small shear rate in the low-
density regime where the Boltzmann entropy prevails. In ad-
dition, there appear earlier considerations of NE entropies for
dense systems. The revised Enskog equations were employed
to study the formal aspect of establishing irreversibility of
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FIG. 1. (Color online) Schematic of the QOD system of hard
disks which extends along x, where the longitudinal length and
transverse width are L, and L, respectively, and the radius of the
hard disk is assumed to be a.

dense gases, similar to Boltzmann’s H theorem, however no
connection was made with a concrete physical system [8,9].
Also, by utilizing the Green expansion of the generalized
Gibbs entropy, the steady-state entropy of a moderate dilute
liquid of soft disks was investigated by computer simulation
with the Gaussian thermostat [10]. Further, a direct NEMD
calculation of the entropy change of the steady state of the
same shear flow was applied in order to bypass the complex-
ity of handling Green’s expansion numerically [11]. How-
ever, again the fluid was assumed to be homogeneous and for
both cases the NE entropies studied were all uniform in
space unlike our investigation.

This paper is organized as followings. In Sec. II we de-
scribe our QOD heat transport model with a brief account of
NEMD method used. In Sec. III the kinetic theory basis of
the entropy balance equation is given with the Boltzmann
entropy. In the subsequent Sec. IV the various NE thermo-
dynamic properties associated with the nonuniform entropy
density are presented. Finally, a summary is followed in Sec.
V.

II. QUASI-ONE-DIMENSIONAL HEAT TRANSPORT
MODEL: NEMD

We depict the QOD system of N-identical hard disks
schematically in Fig. 1. The system is in contact with a hot
reservoir with temperature 7 at the left-hand side and with a
cold reservoir of temperature T on the right-hand side. We
restrict the width L, so that it is smaller than twice the diam-
eter 2a of the hard disk, i.e., L, <2(2a). With this restriction,
the particles remain ordered, so a particular particle label
corresponds to a particular location in the system. We use a
modified microscopic collision rule which models the colli-
sion of the hard disks with the interfaces between the system
and the reservoirs such that when a particle hits either bound-
ary with velocity (v,,v,) it bounces back into the system
with the velocity components changed by the reservoir tem-
perature as

v, =-sgn(v,)ev;— (1-€)v,, (1)

v, =sgn(v,)ev; + (1 - €)v,, (2)

where v;= \kgT,/m with T, being either T, or Ty. The ac-
commodation coefficient €(i=x,y) varies in between zero
and unity: The case of €=0 corresponds to the specular
boundary condition and that of €;=1 corresponds to the dif-
fusive boundary condition where a complete reconciliation
of the thermal momentum is assumed. In the present work,
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the transverse velocity is treated not to be changed by the
boundary scattering on the interfaces; i.e., we set eyEO, and
we apply the usual periodic boundary condition in the trans-
verse direction as depicted. This microscopic collision rule
was used previously to investigate the instability structure of
the phase space [14,15]. The parameters that we use in the
simulation throughout are specified here:

(2a)*

N=100, N—— =n,,

= €.=0.5.
LL,

In the above n; is the density parameter that we introduce
and ny=0.1 is chosen for most of data unless otherwise
specified.

According to the first law of thermodynamics, the internal
energy U of the system changes in the course of simulation
as

dU(r)
dt

=QL+ QR’ (3)

where Q,»=dQ,-/dt is the rate of the total heat flow into
(i=L) and out of (i=R) the system at the corresponding end.
Therefore, for a specified temperature ratio 7;/ Ty, we antici-
pate that the system reaches a steady state, when the steady

state condition of Q;=|Qg| establishes. By monitoring the
energy flow at both ends we are able to decide when the
system comes to the desired steady state.

After the system reaches a steady state, we accumulate the
discrete velocities of each particle to obtain the velocity his-
togram. The histogram gives the frequency of finding the
velocity in the range (v,,v,+{,) and (v,,v,+¢;) at a particu-
lar location x, where ¢ is the velocity bin width in the his-
togram, /=x,y. Here, x is understood to be the average po-
sition of the particle of focus. Then, we determine the
velocity distribution g(v,,v,;x) by normalizing the histo-
gram as '

> v &= 1, 4)
i.j
where the indices i,j run over all the velocity bins.
In Fig. 2 we illustrate the reduced velocity distribution of

the hard disk, located at the average position x, which is
defined as

gwix) = X g(vv,0)8;-
J

In this work we choose the same bin widths, {;={;={,
where {,=0.05 is in units of the reference velocity v, which
is defined as vy= \kzT,/m where T, is a reference tempera-
ture which is set to be Tp throughout. Note that what are
actually drawn in Fig. 2 are the reduced distributions divided
by the corresponding local equilibrium ones, accordingly the
distributions vanish at large velocities in both directions. The
numbers near the curves indicate the label of particle begin-
ning from the left, i.e., hot end of the system. The deviation
from local equilibrium appears as an excess of large positive
velocities, opposite to the direction of the temperature gradi-
ent, which is compensated by a small peak at negative ve-
locities. In addition, we have seen that the y-component ve-
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FIG. 2. (Color online) Reduced velocity distributions for QOD
hard disks at a temperature ratio of 7;/Tr=10, where the numbers
denote the labeling of the particles from the hot end. The distribu-
tions are normalized by the corresponding local equilibrium distri-
butions and the velocities are in units of vy, where vy= VkgTg/m.

locity distributions follow essentially the local equilibrium
ones, accordingly they are not presented.

In Fig. 3 the typical hydrodynamic profiles are shown as a
function of the average positions of the hard disks. Through-
out this work positions are to be understood as being in units
of the diameter of the hard disks. The local steady-state den-
sity is measured in the simulation as

1

n(x) = m

(5)

where A(x) is the distance between the half-way points sepa-
rating the average positions of the particle of interest and that
of its nearest neighbor. The i component of the local tem-
perature is measured according to (i=x,y)
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FIG. 3. (Color online) Temperature and density profiles vs av-
erage positions for hard disks at 7/ Tx=10, where the temperatures
are in units of the reference temperature 7%, the density is in units
of the inverse of the diameter of the hard disk squared, and the
positions are in units of diameter 2a.
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where kg is the Boltzmann constant and 7; is the free-flight
time of the particle between collisions with constant velocity
(vy5vy)), s0 27 is the total measuring time. The tempera-
tures decrease monotonously with the distance from the hot
end. On the other hand, the density profile manifests the
opposite trend. Near the interfaces with the reservoirs strong
boundary effects appear stemming from our microscopic
scattering model. Note that T(x) is identical with T,(x) in
the bulk, which reflects indirectly that the system reaches the
desired steady state, but a discrepancy appears near the
boundaries. Although not drawn, the pressure p, from the
equilibriumlike relation, p=nkyT, is seen to be relatively
constant along the system when the local values of n and T
are used. Also, the flow velocity, or the first-order velocity
moment, was seen to be vanishingly small in our system as
anticipated. Our QOD model produces the steady-state hy-
drodynamic profiles consistent with the exact solutions to the
kinetic equation, reported previously [12,13].

III. GENERALIZED GIBBS RELATION: KINETIC
THEORY

Here we describe the kinetic theory basis of NE thermo-
dynamics for our heat transport model so that the discussions
of the simulation outcomes that follow are made self-
contained. The basic ingredient is the Boltzmann entropy
S(¢) which is defined, up to a constant, to be

S(t) = f drs(r,1), (7)

where s(r,7) is the entropy density at position r at time 7
given as [16]

s(r,t)=- kBJ dvf(r,v,t)In f(r,v,1). (8)

The distribution function f(r,v,7) obeys the Boltzmann
equation which takes the following form without external
forces,

af

I _
o ar = ©

where J[f] is the collision integral. The distribution function
is normalized as

f dvf(r,v,t) = n(r,1), (10)

where n is the local number density of the system.

In kinetic theory the local entropy-balance equation is de-
rived theoretically by calculating the total time derivative of
the Boltzmann entropy, Eq. (7), with use of the Boltzmann
equation, Eq. (9). The result is expressed as
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ds .
5+V'Js=0-enl' (11)

In the above the entropy flux j, is given by

j(r,n)=- ka dvvfin f. (12)

Also, the entropy-production per unit volume o,,, is given by

a-enl(r’t) == ka dVJ[f]ln f, (13)

which is positive according to H theorem [3]. Accordingly,
all the local quantities associated with the entropy balance
equation have been defined through the solution to the Bolt-
zmann equation rigorously. It is important to note that their
definitions are exact within the validity of the Boltzmann
equation, and are not restricted to the linear regime. In our
MD formulas these exact definitions are used.

Hereafter, we specialize our discussion to the QOD sys-
tem with a temperature gradient along negative x. The flow
velocity does not enter into the current problem because the
total momentum must be conserved on average. Also, time
dependence is removed for a steady-state system. Further, we
consider a small temperature gradient in order to provide a
concrete theoretical description of the well-adapted linear ir-
reversible thermodynamics for our system. When one seeks
for the Chapman-Enskog expansion solution to first order in
the gradient, i.e., Navier-Stokes order [17], the distribution
function is given as

f=f1+®. (14)

In the above f; is the local-equilibrium distribution function
which reads

frlx,v) = eXPH,U«(x) - %mvz}ﬂ(x)], (15)

where w is fixed by the normalization condition, Eq. (10), as
_ mpB(x) \"?
p() = B lln{n<x>(—2 ) :
ar

where d is the dimensionality and 8=1/(kzT). The deviation
from the local equilibrium is obtained at the first Sonine
approximation explicitly as [7]

1 d+2\ dInT
D(x,v)=—v" (— 2 ) , (16
(xe,v)=—v'f, 2m,80 S ), (16)
where the coefficient v~! is by
2
vl= _pr_l, (17)
d+2kg

in which p and « are the hydrostatic pressure and the thermal
conductivity, respectively.

It is worthwhile to note that the spatial dependence of
solution, Eq. (14), occurs only through the hydrodynamic
fields, which is a well known characteristic of a normal so-
lution to the Boltzmann equation [13]. Accordingly, it fol-
lows that any velocity moments will possess similar depen-
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dence. For instance, the heat flux of the structure, whose
definition is given by jo=/ dv%mvzvf, can be calculated ex-
plicitly using the distribution function given in Eq. (14) to
obtain

dr
j =—-K—/X, 18
JoW)=~w— % (18)
which is nothing but Fourier’s law. In addition, since the
local energy balance implies in the steady state that

V-jox)=0, (19)

the heat flux must be uniform in the present problem. This is
in contrast to the entropy balance in nonequilibrium states in
which the entropy flux is nonuniform according to

V. js =Oept- (20)

Next, one can substitute the Chapman-Enskog expansion
solution into Egs. (8), (12), and (13) and carry out the veloc-
ity integration. The results are given below to leading order
in the temperature gradient in each case: The entropy density
is obtained at the level of the local-equilibrium approxima-
tion,

S(.x) = - kBJ deL In fL

d
:kw(x){%—ln{n(x)(%q(j)) /2}}, (21)

which is reminiscent of the equilibrium Sackur-Tetrode equa-
tion except that the hydrodynamic fields are local in the
present case. The entropy flux is given to Navier-Stokes or-
der as

dar
js(x) = - kBJ dvvd lnsz - K’I‘_ld—xA. (22)
X

Utilizing Eq. (18), one can cast the expression for the en-
tropy flux into the form

Js() = Tjo(x) (23)

whose physical significance is discussed below. For the en-
tropy production, instead of using Eq. (13), one may calcu-
late it from Eq. (20) under the steady-state condition as

dinT|?
o | (24)

O'enz(x) =V (T_le) =K

where in the second step use has been made of Eq. (19). The
positivity of the local entropy-production rate manifests itself
in Eq. (24). Note that all the spatial dependence of the en-
tropy density, flux, and production rate are implicit through
the local temperature, which reflects the aforementioned as-
pect of the normal solution to the kinetic equation.

The relation, Eq. (23), between the entropy flux and the
heat flux may be viewed as the generalized version of the
equilibrium Clausius relation. It constitutes an underlying
basis of the linear irreversible thermodynamics for steady-
state heat transport in our system. When Eq. (23) is com-
bined with the first law of thermodynamics, one establishes
the generalized Gibbs relation in the form,
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T, ds=de - (’ﬁ + Ms,)dn, (25)
n

where T, py;, and ug, are the local, steady state, temperature,
pressure, and chemical potential, respectively. Note that Eq.
(25) views the entropy density as s=s(e,n) where the NE
conjugate to the number density n is characterized formally
as a combination of the pressure and the chemical potential.
The energy density e(x) is specified by the definition,
e(x):fdv%mv%f(x,v) which gives e=%’nkBT. Then, the
steady-state temperature 7, is determined from the partial

differentiation,
d
T, = (—) : (26)
de/,

and with use of Eq. (21) it turns out that
Ty(x) =T(x). (27)

Similarly, the steady-state pressure is calculated from

as
Pt =—1N) Mg+ Tst s (28)
on/,

which, utilizing = u, results in

ps(x) =p(x). (29)

In obtaining Eq. (29) we have defined the kinetic pressure p
as one-half of the trace of the pressure tensor for the present
QOD model (d=2), accordingly p=nkzT, as was used in the
previous section to calculate the hydrodynamic pressure pro-
files. Then, it follows that p,,=nkgT,;,— p. Thus, the steady-
state temperature and pressure are identical locally to the
kinetic temperature and pressure in the linear heat transport
problem.

IV. LOCAL ENTROPIES: SIMULATION RESULT

For the low-density system considered the quantities as-
sociated with the entropy balance are defined explicitly in
terms of the distribution function via the Boltzmann entropy.
We adopt the theoretical definitions for the entropy density,
flux, and entropy production, as given in Egs. (8), (12), and
(13), and evaluate them numerically utilizing the velocity
distribution data measured from our NEMD. To this end, we
first need to make the equations discrete in the velocity scale
of {, which is the bin size of our MD velocity measurement.
In the following it is to be understood that all distances are
normalized by 2a and the velocities by vy which is defined in
Sec. II.

Before proceeding, it is worthwhile to note that the factor
of In f appearing in the conventional definition of the Boltz-
mann entropy, Eq. (7), is not well defined in the sense that
the argument f has the dimensions of 1/(2av,)?=a~'. This
logarithmic factor enters subsequently in each of
Egs. (8), (12), and (13). Accordingly, it must be made dimen-
sionless, in particular, for our numerical purposes. That can

be done by a transformation f— f=fa which leads to
In f—In f—In « in the relevant equations. Of course, « still
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FIG. 4. (Color online) Entropy density along the system for a
fixed temperature ratio of 7;/Tr=10, where the entropy density is
in units of kp/(2a)>.

has the dimensions of the inverse of f; however, when all the
extra terms, generated by In « in Egs. (8), (12), and (13), are
gathered, together they give

d
kB{(?—’: +V. (nu)}ln a,

in the entropy balance equation, Eq. (11), where u is the flow
velocity. Therefore, when there are no sinks or sources of
particles in the system, the additional term gives no contri-
bution. Accordingly, the factor In f does not cause any prob-
lem even though the argument f has dimensions.

In Fig. 4 we draw a representative entropy density of the
QOD system for a fixed temperature ratio. The bullets are the
outcome of the numerical simulation, calculated from the
coarse-grained formula of Eq. (8),

[s()Tvp=—n*(x) 2 g(v;0;:0)In g(v;0;3%) — n*(0)In n*(x),
¥

(30)

where the dimensionless distribution function g is defined in
terms of the measured distribution function g from NEMD as

g= g(2a)2§§/n*.

Also, the entropy density is made dimensionless according to
[s]up=s(2a)*/ kg and the density as n* = (2a)n. The crosses
are the results from the Sackur-Tetrode equation, Eq. (21),
after substitution of the simulated hydrodynamic profiles. As
one can see, the two results match quite well throughout the
system. There appears an abrupt change in the entropy den-
sity close to the interfaces where significant boundary effects
occur. There is more entropy locally at a position with a
colder temperature compared to a higher temperature region
where the particle density is lower.

In Fig. 5 the entropy flux is given for the same system and
temperature ratio used in Fig. 4. The entropy flux has been
obtained from the discrete formula in Eq. (12),
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FIG. 5. (Color online) Entropy flux along the system for a fixed
temperature ratio of 7;/Tr=10, where the entropy flux is repre-
sented by the bullets and is in units of kgv,/(2a)>.

[0 Iwp == 1"(0) X v,8(vsv;:0)In gv,v;x),  (31)

ij

which is made dimensionless by dividing it by kgv,/(2a)>.
The result shows that the steady-state entropy flux increases
toward the cold end, which can be understood from
Eq. (19). Since the heat flux is uniform, it follows that
J(L)/j(R)=Tg/T,. Accordingly, for T;> Ty it implies that
Js(L)<j4(R). We have also calculated the entropy flux from
the simulated heat flux by dividing it by the local tempera-
ture. The heat flux was obtained from the discrete version of
its kinetic theory definition,

Lo Ivp = n*(X)E {%(Uzz + U_lz-)vi}g(ui,vj;x), (32)
ij

which is made dimensionless by dividing both sides with
kgTovo/ (2a)?. We found that the entropy fluxes obtained by
the two methods are identical within numerical accuracy
throughout the structure except near the walls. To illustrate
these findings, we plot the heat flux in the same Fig. 5 to-
gether with the entropy flux under the same conditions. In
the figure the crosses are obtained directly from the heat flux
which is nearly constant throughout the structure as ex-
pected. The apparent slope of the heat flux is due to the
neglect of collisional contributions which vary with density
(and hence position). The entropy flux multiplied by the local
temperature is presented as the unfilled squares, which
agrees well the heat flux in the bulk. The difference shown
near the walls is again attributed to the strong boundary ef-
fects in our QOD collision model. Consequently, we confirm
that the generalized Clausius relation Eq. (23) for the steady
state holds quite well, which in turn asserts that the kinetic
temperature is equal to the NE, steady-state temperature lo-
cally in the QOD heat transport system.

In order to examine the generalized Clausius relation fur-
ther in the regime where kinetic theory is accurate, we have
carried out the same calculation for several temperature ra-
tios, T;/Tx=10, 20, and 50 for a lower density of n¢y=0.01.
The results are depicted in Fig. 6 where the bullets are the
data from the entropy flux multiplied by the temperature pro-
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FIG. 6. (Color online) Heat flux along the system for several
temperature ratios, 7,/ Tr=10, 20, and 50 at a density parameter of
no=0.01, where the heat fluxes are in units of kzTyvy/(2a)* and T}
is normalized by 7.

file for each temperature ratio. There appear well-defined
bulk heat fluxes for the temperature ratios, 7;/Tr=10 and
20, and in these cases the generalized Clausius relation, rep-
resented by the bullets, works well except near the bound-
aries. However, it is seen that at the temperature ratio of
T;/Txr=50 the two heat-flux profiles match with each other
not as good as the smaller temperature ratios. Accordingly, it
seems that the temperature ratio of 7;/Tx=50 is too large for
the generalized Clausius relation to hold accurately. There-
fore, it suggests that linear irreversible thermodynamics fail
to work away from the small-gradient regime as predicted by
the kinetic theory. There appears a marginal variation in the
bulk heat-flux in Fig. 6 for 7;/Tr=50 which seems not to
satisfy the strict spatial constancy of the heat flux, Eq. (19).
As noted previously in Fig. 5, this is due to the neglect of the
collisional contributions. Using the exact expression for the
bulk heat-flux [1] we have confirmed that it is identical at
both ends of the system and that this agrees with the result
for the whole system. Within the scope of the Boltzmann
entropy we report only the kinetic part.

Next, we consider the entropy-production rate in Fig. 7
which is calculated using the MD formula,

[TendX) Ip = [ () PLT" ()] 22 ERIEY
L]

- 8130530 In[g(v;,05)/8 (V3,0 5%) ],
(33)

which was made dimensionless by dividing it with VOkB\s“TO,
where g; is the dimensionless local-equilibrium distribution
function given by

)
grvv;3x) =

1
mexp[— E(Ul2 + sz»)/T*(x):| s

in that the temperature profile is normalized as T"=T/T,
where T,=Ty and also that {*={/v,. Equation (33) is a dis-
crete version of Eq. (13) where for computational simplicity
the collision integral is replaced by the Bhatnagar-Gross-
Kook (BGK) kinetic model [18],
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FIG. 7. (Color online) Entropy production rate along the system
for the chosen temperature ratios of T;/Txr=10 (circles), 20 (bul-
lets), and 50 (crosses), where the entropy production rates are in
units of vokg\Ty. The inset is the comparison between two results
for T;/Tg=10, where the plus symbols are from Eq. (20) and the
bullets are from Eq. (33).

Il = = v (f = f1),

where v is the average collision frequency whose relation to
the thermal conductivity is given in Eq. (17). When it is
evaluated with the local equilibrium distribution function, it
turns out that

V(%) = v (VT (x),

for both hard disks (d=2) and spheres (d=3), where v is a
constant, independent of x, whose specific value depends on
the dimensionality. It is well known that the BGK model
preserves the most important features of the Boltzmann
equation. Collaterally, the entropy-production rates can be
calculated using Eq. (20) by taking derivative of the already
obtained entropy fluxes numerically. Both approaches are not
limited to the small gradient regime. We have confirmed that
the results from Eq. (20) and (33) are identical, up to an
overall constant which arises from the different normaliza-
tion schemes, within the numerical accuracy (see the inset).
The results shown in Fig. 7 are for several temperature ratios,
where the empty circles are for 7;/Tz=10, the filled bullets
are for T;/Tx=20, and the crosses are for 7;/Tr=50. We see
that the entropy-production rates are positive at all points in
the system. The bigger temperature ratio, the bigger the
entropy-production rate. Also, the boundary effects are
shown near the walls. The slow increase of the entropy-
production rate in the bulk toward the cold end may be un-
derstood from Eq. (24), which states that o,,,~ T~?, assum-
ing constant temperature gradients. When the temperature
gradient is small, the entropy production rate obeys the phe-
nomenological expression of linear irreversible thermody-
namics, given in Eq. (24).

Finally, we present the total entropy of the system for
various temperature ratios. The total steady-state entropy for
a fixed temperature ratio between the two ends is calculated
from
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FIG. 8. (Color online) Total entropy vs temperature gradient
|VT| for T,/ Tx=5, 10, 20, 35, and 50; the entropy and temperature
gradient are in units of kgl,/(2a) and Ty/(2a), respectively.

Sy= Lyj dxs(x). (34)

The numerical result is given in Fig. 8 where the steady-state
entropy is drawn as a function of the temperature gradient
which is defined to be
Ly

For the present purpose we used L,=1.15X(2a) and the cor-
responding L, was determined by L,=ny X L,/[N(2a)*] with
ny=0.1. It is seen that the steady-state entropy of the system
increases monotonically with the temperature ratio. Linear
irreversible thermodynamics is applicable only to the small
temperature ratio domain. In the opposite regime the gener-
alized Gibbs relation does not hold, however the applicabil-
ity of the Boltzmann entropy extends to such a far from
equilibrium limit.

V. CONCLUSION

We have considered a QOD system of hard disks, placed
in thermal contact at each end with a heat reservoir at a
different temperature to generate heat transport. The system
is closed diffusively, however, it is subject to a thermody-
namic force which produces the temperature gradient. We
have performed MD simulations to study the local properties
of irreversible thermodynamics employing the Boltzmann
entropy as the NE entropy. Consequently, we have obtained
the inhomogeneous entropy densities, fluxes, and production
rates along the system, associated with the entropy balance
in the steady state.

Our simulation is not limited to the situation of a small
temperature gradient, however, our attention has been largely
directed to the linear regime where the phenomenological
description of irreversible thermodynamics provides a com-
parison. In the linear regime it is shown that the entropy flux
at a chosen position, multiplied by the local kinetic tempera-
ture at the corresponding point, equals the local heat flux.
This means that the equilibrium-like Clausius relation holds
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locally in our system, which, in turn, asserts that the kinetic
temperature is identical with the NE thermodynamic tem-
perature in the steady state. A proper definition of tempera-
ture for NE states is a continually important issue [19]. We
have manifested it in a concrete example of a QOD heat flow
by computer experiments. We have combined the local Clau-
sius equation with the first law of thermodynamics to consti-
tute the generalized Gibbs relation of linear irreversible ther-
modynamics in local form. In the case when the temperature
gradient departs from the linear response regime, the numeri-
cal data suggest that the generalized Gibbs equation no
longer hold. Our simulation outcome is consistent with the
kinetic theory prediction.

In short, we have investigated the NE thermodynamics of
the heat transport problem using MD simulations in the
steady state. The nonuniform Boltzmann entropy density

PHYSICAL REVIEW E 80, 061137 (2009)

served as the relevant NE thermodynamic potential for the
low-density system considered. We have verified the direct
local information on the entropy balance of the QOD system
by computer experiments. The simulations of the QOD sys-
tem are not limited in any way, so this system provides a
very useful test bed to determine the accuracy or otherwise
of theories which extend the Boltzmann entropy beyond the
low-density or linear regimes.
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